Maro Publications

Polyethylene Glycol (PEG)

Notes

*11/19/2013 
from 3/21/2013

Maro Encyclopedia

Comments

Patent Abstracts

Patent Titles

Polyethers

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Notes

Polyethylene glycol (PEG) is a polyether compound with many applications from industrial manufacturing to medicine. The structure of PEG is (note the repeated element in parentheses):

H-(O-CH2-CH2)n-OH

PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight.

PEG, PEO, or POE refers to an oligomer or polymer of ethylene oxide.  The three names are chemically synonymous, but historically PEG has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass.[2] PEG and PEO are liquids or low-melting solids, depending on their molecular weights.  PEGs are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol. While PEG and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical.  Different forms of PEG are also available, depending on the initiator used for the polymerization process the most common initiator is a monofunctional methyl ether PEG, or methoxypoly(ethylene glycol), abbreviated mPEG. Lower-molecular-weight PEGs are also available as purer oligomers, referred to as monodisperse, uniform, or discrete.  Very high purity PEG has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction.  Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10-1000 fold that of polydisperse PEG.

PEGs are also available with different geometries.

Branched PEGs have three to ten PEG chains emanating from a central core group.

Star PEGs have 10 to 100 PEG chains emanating from a central core group.

Comb PEGs have multiple PEG chains normally grafted onto a polymer backbone.

The numbers that are often included in the names of PEGs indicate their average molecular weights (e.g. a PEG with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 400. Most PEGs include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (Mw/Mn). MW and Mn can be measured by mass spectrometry.

PEGylation is the act of covalently coupling a PEG structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEGylated protein. PEGylated interferon alfa-2a or −2b are commonly used injectable treatments for Hepatitis C infection.

PEG is soluble in water, methanol, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.

PEGs contain potential toxic impurities, such as ethylene oxide and 1,4-dioxane. Ethylene Glycol is nephrotoxic if applied to damaged skin.

Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm)PEGs and methoxypolyethylene glycols are manufactured by Dow Chemical under the tradename Carbowax for industrial use, and Carbowax Sentry for food and pharmaceutical use. They vary in consistency from liquid to solid, depending on the molecular weight, as indicated by a number following the name. They are used commercially in numerous applications, including as surfactants, in foods, in cosmetics, in pharmaceutics, in biomedicine, as dispersing agents, as solvents, in ointments, in suppository bases, as tablet excipients, and as laxatives. Some specific groups are lauromacrogols, nonoxynols, octoxynols, and poloxamers.

Macrogol, used as a laxative, is a form of polyethylene glycol. The name may be followed by a number which represents the average molecular weight (e.g. macrogol 4000, macrogol 3350 or macrogol 6000).

(Polyethylene Glycol, Wikipedia, 3/21/2013)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Interested!!
Bookmark this page to follow future developments!.
(RDC 6/5/2012)

 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Roger D. Corneliussen
Editor
www.maropolymeronline.com

Maro Polymer Links
Tel: 610 363 9920
Fax: 610 363 9921
E-Mail: cornelrd@bee.net  

***********************************

Copyright 2013 by Roger D. Corneliussen.
No part of this transmission is to be duplicated in any manner or forwarded by electronic mail without the express written permission of Roger D. Corneliussen
**************************************

* Date of latest addition; date of first entry is 3/21/2013.