Maro Publications

Polyester Polymerization


from 6/19/2012

Maro Topics


Patent Abstracts

Patent Titles





1. “Synthesis of polyesters is generally achieved by a polycondensation reaction. See "condensation reactions in polymer chemistry". The general equation for the reaction of a diol with a diacid is :

 (n+1) R(OH)2 + n R´(COOH)2 → HO[ROOCR´COO]nROH + 2n H2O”

(Wikipedia, Polyester Polymerization, 6/19/2012)


2. “Melt-phase polymerization can be used to produce a variety of polyesters, such as, for example, polyethylene terephthalate (PET). PET is widely used in beverage, food, and other containers, as well as in synthetic fibers and resins. Advances in process technology coupled with increased demand have lead to an increasingly competitive market for the production and sale of PET. Therefore, a low-cost, high-efficiency process for producing PET is desirable.

Generally, melt-phase polyester production facilities, including those used to make PET, employ an esterification section and a polycondensation section. In the esterification section, polymer raw materials (i.e., reactants) are converted to polyester monomers and/or oligomers. In the polycondensation section, polyester monomers exiting the esterification section are converted into a polymer product having the desired final chain length.

In most conventional melt-phase polyester production facilities, esterification is carried out in one or more mechanically agitated reactors, such as, for example, continuous stirred tank reactors (CSTRs). However, CSTRs and other mechanically agitated reactors have a number of drawbacks that can result in increased capital, operating, and/or maintenance costs for the overall polyester production facility. For example, the mechanical agitators and various control equipment typically associated with CSTRs are complex, expensive, and can require extensive maintenance. Further, conventional CSTRs frequently employ internal heat exchange tubes that occupy a portion of the reactor's internal volume. In order to compensate for the loss in effective reactor volume, CSTRs with internal heat exchange tubes require a larger overall volume, which increases capital costs. Further, internal heat exchange coils typically associated with CSTRs can undesirably interfere with the flow patterns of the reaction medium within the vessel, thereby resulting in a loss of conversion. To increase product conversion, many conventional polyester production facilities have employed multiple CSTRs operating in series, which further increases both capital and operating costs.”

[DeBruin, US Patent 8,192,694 (6/5/2012)]


Bookmark this page to follow future developments!.
(RDC 6/5/2012)


Roger D. Corneliussen

Maro Polymer Links
Tel: 610 363 9920
Fax: 610 363 9921


Copyright 2012 by Roger D. Corneliussen.
No part of this transmission is to be duplicated in any manner or forwarded by electronic mail without the express written permission of Roger D. Corneliussen

* Date of latest addition; date of first entry is 6/19/2012.