Maro Publications



From 03/26/2014 to 5/23/2012

Maro Encyclopedia


Laminates: Patent Abstracts

Laminates: Patent Titles


Composites Structures

Laminate Applications




1. “A laminate is a material that can be constructed by uniting two or more layers of material together. The process of creating a laminate is lamination, which in common parlance refers to the placing of something between layers of plastic and gluing them with heat, pressure, and an adhesive.” (Wikipedia, Laminates, 5/23/2012)

“There is extensive use in the transportation industry of composite laminate structures due to their lightweight and attractive performance. These industries include aerospace, marine, rail, and land-based vehicular. The composite laminate structures are made primarily from skins of a polymer matrix fiber composite, where the matrix is either a thermoset or thermoplastic resin and the fiber is formed from groupings of fiber filaments of glass, carbon, aramid, or the like. The core is formed from end-grain balsa wood, honeycomb of metallic foil or aramid paper, or of a wide variety of urethane, PVC, or phenolic foams, or the like.

Typical failures in laminate structure can result from core failure under compressive forces or in shear or, most commonly, from a failure of the bond or adhesive capability between the core and the composite skins (also known as face sheets). Other failures, depending on loading may include crimpling of one or both skins, bending failure of the laminate structure, or failure of the edge attachment means from which certain loads are transferred to the laminate structure.

Certain patents have been granted for an art of introducing reinforcements that are normal to the planes of the skins, or at angles to the normal (perpendicular) direction. This is sometimes called the "Z" direction as it is common to refer to the coordinates of the laminate skins as falling in a plane that includes the X and Y coordinates. Thus the X and Y coordinates are sometimes referred to as two-dimensional composite or 2-D composite. This is especially appropriate as the skins are many times made up of fiber fabrics that are stitched or woven and each one is laid on top of each other forming plies or layers of a composite in a 2-D fashion. Once cured these 2-D layers are 2-D laminates and when failure occurs in this cured composite, the layers typically fail and this is known as interlaminar failure.

The patents that have been granted that introduce reinforcements that are normal to the X and Y plane, or in the generally Z-direction, are said to be introducing reinforcements in the third dimension or are 3-D reinforcements. The purpose of the 3-D reinforcement is to improve the physical performance of the sandwich structure by their presence, generally improving all of the failure mechanisms outlined earlier, and some by a wide margin. For example, we have shown that the compressive strength of a foam core laminate structure with glass and vinyl ester cured skins can be as low as 30 psi. By adding 16 3-D reinforcements per square inch, that compressive strength can exceed 2500 psi. This is an 83 times improvement.”

[Johnson et al, US Patent 8,272,188 (9/25/2012)]


In this day of overworked technical people, keeping up is nearly impossible.  Maro's mission is to help keep up in as little time as possible.  Bookmark this page and check it often.  You will be surprised what can be picked up in just a few moments spent each day.

These pages list the links as they are found.  Some will abstracted and added to Maro Topics. (RDC 2/7/2012)


Roger D. Corneliussen

Maro Polymer Links
Tel: 610 363 9920
Fax: 610 363 9921


Copyright 2012 by Roger D. Corneliussen.
No part of this transmission is to be duplicated in any manner or forwarded by electronic mail without the express written permission of Roger D. Corneliussen

* Date of latest addition; date of first entry is 5/23/2012.