Maro Publications



from 6/22/2013

Maro Encyclopedia


Patent Abstracts

Patent Titles

Coating Methods





1. Anodic electropolymerization consists of the polymerization of monomer species in the presence of electrons close to an electrically conductive or semiconductive surface. The polymerization results in the formation of a film by precipitation in the vicinity of the surface. However, no bond of covalent nature is created between the surface and the polymer, which results in the films obtained not having an optimal resistance to attacks. Among the monomers that can be used according to this technique, mention may especially be made of pyrrole. The electrografting of polymers is a technique based on the initiation and then the polymerization, by chain propagation, which is electroinduced of electroactive monomers on the surface of interest, which acts both as electrode and as polymerization initiator. It requires the use of precursors suited to its mechanism of initiation by reduction and of propagation, generally anionic, as preference is often given to cathodically initiated electrografting, which can be applied to noble and non-noble metals. Electrografting by anodic polarization can, for its part, be applied only to noble or carbon-based substrates: graphite, glassy carbon, boron-doped diamond. International application WO 03/018212 describes, in particular, a process for grafting and growing a conductive organic film on an electrically conductive surface, the grafting and growing being carried out simultaneously by electro-reduction of a diazonium salt that is a precursor of said organic film.

Electrografting is the only technique which makes it possible to produce grafted films with specific control of the interfacial bonding.

[Coating Methods, US Patent 8,466,072 (6/18/2013)]


Bookmark this page to follow future developments!.
(RDC 6/5/2012)


Roger D. Corneliussen

Maro Polymer Links
Tel: 610 363 9920
Fax: 610 363 9921


Copyright 2013 by Roger D. Corneliussen.
No part of this transmission is to be duplicated in any manner or forwarded by electronic mail without the express written permission of Roger D. Corneliussen

* Date of latest addition; date of first entry is 6/22/2013.