Maro Publications

Electrophotography
Xerography

Notes

*7/26/2013 
from 7/9/2012

Maro Topics

Comments

Patent Abstracts

Patent Titles

Applications

Printing

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Notes

“Xerography (or electrophotography) is a dry photocopying technique invented by Chester Carlson in 1938, for which he was awarded U.S. Patent 2,297,691 on October 6, 1942. Carlson originally called his invention electrophotography. It was later renamed xerography—from the Greek roots ξηρός xeros "dry" and -γραφία -graphia "writing"—to emphasize that, unlike reproduction techniques then in use such as cyanotype, this process used no liquid chemicals.

Carlson's innovation combined electrostatic printing with photography, unlike the dry electrostatic printing process invented by Georg Christoph Lichtenberg in 1778.[1] Carlson's original process was cumbersome, requiring several manual processing steps with flat plates. It was almost 18 years before a fully automated process was developed, the key breakthrough being use of a cylindrical drum coated with selenium instead of a flat plate. This resulted in the first commercial automatic copier, the Xerox 914, being released by Haloid/Xerox in 1960. Before that year, Carlson had proposed his idea to more than a dozen companies, but none was interested. Xerography is now used in most photocopying machines and in laser and LED printers.”

(Wikipedia, Electrophotography, 7/9/2012)

------------------------------------------------------

“In a typical electrophotographic imaging apparatus, an image of an original to be copied, or the electronic document image, is recorded in the form of an electrostatic latent image upon a photosensitive member and the latent image is subsequently rendered visible by the application of thermoplastic resin particles or composites thereof which are commonly referred to as toner. The visible toner image is in a loose powdered form and can be easily disturbed or destroyed. The toner image is usually fixed or fused upon a substrate or support member which may be a cut sheet or continuous media, such as plain paper.

The use of thermal energy for fixing toner images onto a support member is well known. In order to fuse toner material onto a support surface permanently by heat, it is necessary to elevate the temperature of the toner material to a point at which the constituents of the toner material coalesce and become tacky. This heating causes the toner to flow to some extent into the fibers or pores of the support member. Thereafter, as the toner material cools, solidification of the toner material causes the toner material to be firmly bonded to the support.

Several approaches to thermal fusing of toner images have been described in the prior art. These methods include providing the application of heat and pressure substantially concurrently by various means: a roll pair maintained in pressure contact; a belt member in pressure contact with a roll; and the like. Heat may be applied by heating one or both of the rolls, plate members or belt members. The fusing of the toner particles takes place when the proper combination of heat, pressure and contact time is provided. The balancing of these parameters to bring about the fusing of the toner particles is well known in the art, and they can be adjusted to suit particular machines or process conditions.

During operation of a fusing system in which heat is applied to cause thermal fusing of the toner particles onto a support, both the toner image and the support are passed through a nip formed between the roll pair, or plate or belt members. The concurrent transfer of heat and the application of pressure in the nip affect the fusing of the toner image onto the support. It is important in the fusing process that no offset of the toner particles from the support to the fuser member take place during normal operations. Toner particles that offset onto the fuser member may subsequently transfer to other parts of the machine or onto the support in subsequent copying cycles, thus increasing the background density or interfering with the material being copied there. The referred to "hot offset" occurs when the temperature of the toner is increased to a point where the toner particles liquefy and a splitting of the molten toner takes place during the fusing operation with a portion remaining on the fuser member. The hot offset temperature or degradation to the hot offset temperature is a measure of the release property of the fuser member, and accordingly it is desired to provide a fusing surface with a low surface energy to provide the necessary release.

A fuser or image fixing member, which can be a roll or a belt, may be prepared by applying one or more layers to a suitable substrate. Cylindrical fuser and fixer rolls, for example, may be prepared by applying an elastomer or fluoroelastomer to an aluminum cylinder. The coated roll is heated to cure the elastomer. Such processing is disclosed, for example, in U.S. Pat. Nos. 5,501,881, 5,512,409, and 5,729,813, the disclosure of each of which is incorporated by reference herein in its entirety.

Current fuser members may be composed of a resilient silicone layer with a fluoropolymer topcoat as the release layer. Fluoropolymers can withstand high temperature) (>200.degree.) and pressure conditions and exhibit chemical stability and low surface energy, i.e. release properties. There are typically two types of fuser topcoat materials used for the current fuser member--fluoroelastomers and fluoroplastics. Fluoroelastomers have good mechanical flexibility, provide shock absorbing properties and typically require a release agent to prevent offset due to their higher surface energy. Fluoroplastics, such as TEFLON.RTM. from E.I. DuPont de Nemours, Inc. have a lower surface energy due to high fluorine content and are widely used for oil-less fusing. However, fluoroplastics typically lack mechanical flexibility, which can cause, for example, denting, cracking, and abrasion.

 [Qi et al, US Patent 8,211,535 (7/3/2012)]

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Interested!!
Bookmark this page to follow future developments!.
(RDC 6/5/2012)

 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Roger D. Corneliussen
Editor
www.maropolymeronline.com

Maro Polymer Links
Tel: 610 363 9920
Fax: 610 363 9921
E-Mail: cornelrd@bee.net  

***********************************

Copyright 2012 by Roger D. Corneliussen.
No part of this transmission is to be duplicated in any manner or forwarded by electronic mail without the express written permission of Roger D. Corneliussen
**************************************

* Date of latest addition; date of first entry is 7/9/2012.