Maro Publications

Acrylonitrile Butadiene Styrene Copolymers



from 7/31/2013

Maro Topics


Patent Abstracts

Patent Titles





“Acrylonitrile butadiene styrene (ABS) (chemical formula (C8H8)x· (C4H6)y·(C3H3N)z) is a common thermoplastic. Its glass transition temperature (ABS is amorphous and therefore has no true melting point) is approximately 105 °C (221 °F).[1]

It is a copolymer made by polymerizing styrene and acrylonitrile in the presence of polybutadiene. The proportions can vary from 15 to 35% acrylonitrile, 5 to 30% butadiene and 40 to 60% styrene. The result is a long chain of polybutadiene criss-crossed with shorter chains of poly(styrene-co-acrylonitrile). The nitrile groups from neighboring chains, being polar, attract each other and bind the chains together, making ABS stronger than pure polystyrene. The styrene gives the plastic a shiny, impervious surface. The butadiene, a rubbery substance, provides resilience even at low temperatures. For the majority of applications, ABS can be used between −20 and 80 °C (-4 and 176 °F) as its mechanical properties vary with temperature.[2] The properties are created by rubber toughening, where fine particles of elastomer are distributed throughout the rigid matrix.

Production of 1 kg of ABS requires the equivalent of about 2 kg of petroleum for raw materials and energy. It can also be recycled.[3]

ABS plastic is damaged by sunlight. This caused one of the most widespread and expensive automobile recalls in US history”

(Wikipedia, ABS, 8/11/2012)


“Acrylonitrile-butadiene-styrene copolymer resin (hereinafter ABS resin) generally has a good balance of physical properties such as processability of styrene, toughness and chemical resistance of acrylonitrile, and impact resistance of butadiene, and has an excellent appearance. Therefore, ABS resins have been widely used in automobile parts, electronic and electrical appliances, office appliances, electronic goods, toys, stationery goods and the like. However, ABS resins are typically opaque. Accordingly, other transparent resins such as SAN (Styrene-Acrylonitrile), PC (Polycarbonate), PS (Polystyrene), PMMA (Polymethyl methacrylate) and the like, have been primarily employed as materials for applications requiring transparency.”[Jin et al, US Patent 8,232,342 (7/31/2012)]


Bookmark this page to follow future developments!.
(RDC 6/5/2012)


Roger D. Corneliussen

Maro Polymer Links
Tel: 610 363 9920
Fax: 610 363 9921


Copyright 2012 by Roger D. Corneliussen.
No part of this transmission is to be duplicated in any manner or forwarded by electronic mail without the express written permission of Roger D. Corneliussen

* Date of latest addition; date of first entry is 7/31/2012.